MTH 203: Groups and Symmetry

Homework IV

(Due on the day of the midterm)

Problems for submission

- 1. Let G be a group and H < G.
 - (a) Show that the set $\bigcap_{g \in G} gHg^{-1} \lhd G$.
 - (b) Consider the set $C_G(H) = \{g \in G \mid gh = hg, \forall h \in H\}$ called the *centralizer of H in* G. Show that $C_G(H) < G$.
 - (c) Consider the set $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ called the normalizer of H in G. Show that $C_G(H) < G$.
 - (d) Show that $C_G(H) \triangleleft N_G(H)$. Moreover, when $H \cong \mathbb{Z}_n$, show that

$$N_G(H)/C_G(H) \cong K,$$

where $K < \mathbb{Z}_n^{\times}$.

Problems for practice

- 1. Establish the assertions in 3.2 (ix), 3.3 (ii), 3.3 (v), and 3.3 (vi) of the Lesson Plan.
- 2. Verify the First Isomorphism Theorem for the homomomorphisms in 3.2 (ii) (f) & (g) of the Lesson Plan.
- 3. Classify all homomorphisms from:
 - (a) $\mathbb{Z} \to \mathbb{Z}$.
 - (b) $\mathbb{Z}_m \to \mathbb{Z}_n$
 - (c) $\mathbb{Z}_m \to \mathbb{Z}$
 - (d) $\mathbb{Z} \to \mathbb{Z}_n$
- 4. Let $G = D_{2n}$, for $n \ge 3$. Let $H = \langle r^k \rangle$, for $1 \le k \le n-1$, and let $K = \langle s \rangle$, where s is any reflection.
 - (a) Is $H, K \triangleleft G$? Explain why, or why not.
 - (b) Compute Z(G).
 - (c) Compute $N_G(H)$, $N_G(K)$, $C_G(H)$, and $C_G(K)$.
- 5. Let G be a group, H < G, and $N \lhd G$. Then show that:
 - (a) NH < G. (NH is called the *internal direct product* of N and H.)
 - (b) $H \cap N \triangleleft H$.
 - (c) $N \triangleleft HN$.
 - (d) If $H \lhd G$, then $NH \lhd G$.
 - (e) If o(a) is finite for some $a \in G$, then $o(Na) \mid o(a)$.
- 6. Let G be a group, and H < G. Then prove that:

- (a) $N_G(H) < G$.
- (b) $H \lhd N_G(H)$.
- (c) $N_G(H)$ is the largest subgroup in which H is normal.
- (d) $H \lhd G$ if, and only if $N_G(H) = G$.
- 7. For a group G, consider the subset

$$[G,G] = \{ghg^{-1}h^{-1} : g, h \in G.\}$$

- (a) Show that $[G,G] \lhd G$.
- (b) Show that G/[G,G] is abelian.